104 research outputs found

    A linear optimization technique for graph pebbling

    Full text link
    Graph pebbling is a network model for studying whether or not a given supply of discrete pebbles can satisfy a given demand via pebbling moves. A pebbling move across an edge of a graph takes two pebbles from one endpoint and places one pebble at the other endpoint; the other pebble is lost in transit as a toll. It has been shown that deciding whether a supply can meet a demand on a graph is NP-complete. The pebbling number of a graph is the smallest t such that every supply of t pebbles can satisfy every demand of one pebble. Deciding if the pebbling number is at most k is \Pi_2^P-complete. In this paper we develop a tool, called the Weight Function Lemma, for computing upper bounds and sometimes exact values for pebbling numbers with the assistance of linear optimization. With this tool we are able to calculate the pebbling numbers of much larger graphs than in previous algorithms, and much more quickly as well. We also obtain results for many families of graphs, in many cases by hand, with much simpler and remarkably shorter proofs than given in previously existing arguments (certificates typically of size at most the number of vertices times the maximum degree), especially for highly symmetric graphs. Here we apply the Weight Function Lemma to several specific graphs, including the Petersen, Lemke, 4th weak Bruhat, Lemke squared, and two random graphs, as well as to a number of infinite families of graphs, such as trees, cycles, graph powers of cycles, cubes, and some generalized Petersen and Coxeter graphs. This partly answers a question of Pachter, et al., by computing the pebbling exponent of cycles to within an asymptotically small range. It is conceivable that this method yields an approximation algorithm for graph pebbling

    Pebbling in Dense Graphs

    Full text link
    A configuration of pebbles on the vertices of a graph is solvable if one can place a pebble on any given root vertex via a sequence of pebbling steps. The pebbling number of a graph G is the minimum number pi(G) so that every configuration of pi(G) pebbles is solvable. A graph is Class 0 if its pebbling number equals its number of vertices. A function is a pebbling threshold for a sequence of graphs if a randomly chosen configuration of asymptotically more pebbles is almost surely solvable, while one of asymptotically fewer pebbles is almost surely not. Here we prove that graphs on n>=9 vertices having minimum degree at least floor(n/2) are Class 0, as are bipartite graphs with m>=336 vertices in each part having minimum degree at least floor(m/2)+1. Both bounds are best possible. In addition, we prove that the pebbling threshold of graphs with minimum degree d, with sqrt{n} << d, is O(n^{3/2}/d), which is tight when d is proportional to n.Comment: 10 page
    • …
    corecore